Structural Dynamics of GaN Microcrystals in Evolutionary Selection Selective Area Growth probed by X-ray Microdiffraction

نویسندگان

  • V. Kachkanov
  • B. Leung
  • J. Song
  • Y. Zhang
  • M.-C. Tsai
  • G. Yuan
  • J. Han
  • K. P. O'Donnell
چکیده

A method to grow high quality, single crystalline semiconductor material irrespective of the substrate would allow a cost-effective improvement to functionality and performance of optoelectronic devices. Recently, a novel type of substrate-insensitive growth process called Evolutionary Selection Selective Area Growth (ES-SAG) has been proposed. Here we report the use of X-ray microdiffraction to study the structural properties of GaN microcrystals grown by ES-SAG. Utilizing high resolution in both direct and reciprocal spaces, we have unraveled structural dynamics of GaN microcrystals in growth structures of different dimensions. It has been found that the geometric proportions of the growth constrictions play an important role: 2.6 μm and 4.5 μm wide growth tunnels favor the evolutionary selection mechanism, contrary to the case of 8.6 μm growth tunnels. It was also found that GaN microcrystal ensembles are dominated by slight tensile strain irrespective of growth tunnel shape.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structural dynamics of PZT thin films at the nanoscale

When an electric field is applied to a ferroelectric the crystal lattice spacing changes as a result of the converse piezoelectric effect. Although the piezoelectric effect and polarization switching have been investigated for decades there has been no direct nanosecond-scale visualization of these phenomena in solid crystalline ferroelectrics. Synchrotron x-rays allow the polarization switchin...

متن کامل

X-ray microdiffraction analysis of radiation-induced defects in single grains of polycrystalline Fe

Single-crystal diffuse X-ray scattering was used to characterize radiation-induced defects in individual grains of a polycrystalline proton-irradiated Fe foil. The grains were probed with an intense 1 microm X-ray beam to demonstrate that both polycrystalline and micrometer-scale samples can be studied with single-crystal-like signal-to-noise. Scattering was measured with an X-ray-sensitive are...

متن کامل

Magnetic x-ray microdiffraction

Magnetic x-ray microdiffraction uses the structural specificity of x-ray diffraction to probe complex magnetic structures at the length scales relevant to physical phenomena including domain dynamics and phase transitions. Conventional magnetic crystallography techniques such as neutron or x-ray diffraction lack this spatial resolution. The combination of both reciprocal space and real space re...

متن کامل

Serial femtosecond X-ray diffraction of 30S ribosomal subunit microcrystals in liquid suspension at ambient temperature using an X-ray free-electron laser

High-resolution ribosome structures determined by X-ray crystallography have provided important insights into the mechanism of translation. Such studies have thus far relied on large ribosome crystals kept at cryogenic temperatures to reduce radiation damage. Here, the application of serial femtosecond X-ray crystallography (SFX) using an X-ray free-electron laser (XFEL) to obtain diffraction d...

متن کامل

Shear modulus and plasticity of a driven charge density wave.

We have probed the effects of transverse variations in pinning strength on charge-density-wave (CDW) structure in NbSe3 by x-ray micro-beam diffraction. In ribbonlike crystals having a large longitudinal step in thickness, the CDW first depins on the thick side of the step, causing rotations of the CDW wave vector. By measuring these rotations as a function of position and electric field, the c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2014